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Abstract
Zebra-crossings are useful road features for outdoor

navigation in mobility aids for the partially sighted.
In this paper, zebra-crossings are detected by looking
for groups of concurrent lines, edges are then parti-
tioned using intensity variation information. In order
to tackle the ambiguity of the detection algorithm in
distinguishing zebra-crossings and stair-cases, pose in-
formation is sought. Three methods are developed to
estimate the pose: homography search approach using
an a priori model; finding normal using the vanishing
line computed from equally-spaced lines and with two
vanishing points. These algorithms have been applied
to real images with promising results and they are also
useful in some other shape from texture applications.

1 Introduction
The inadequacy of information provided by long

canes and the very limited acceptability of guide dogs
have prompted the development of electronic mobility
aids for millions of partially sighted people worldwide.
The problem we discuss here arose originally as part of
the navigation function of a Technological Aid aimed
at helping Partially Sighted (TAPS) [12, 13] which
aims to provide a full mobility and navigation capa-
bility for partially sighted people.

Mobility has been defined by Foulke [7] as “the abil-
ity to travel safely, comfortably, gracefully, and inde-
pendently through the environment”. The ability to
detect road features is an important component of any
TAPS as this will facilitate independent outdoor navi-
gation for the partially sighted.

Curbs, stair-cases and zebra-crossings are useful en-
vironmental landmarks that the partially sighted needs
to be made aware of. First, a curb [18] is a hazard that
could cause a partially sighted person to stumble, and
it signifies the boundary between road and pavement.
A stair-case [14, 19] may be a location by which to
orient themselves or an important way point along the
route that they wish to travel. Zebra-crossings are cru-
cial for identifying intersections and crossing roads.

In this paper, we aim to detect the presence of zebra-

crossings in road scenes. The detection algorithm is
outlined in the next section. In Sections 3, 4 and 5,
three methods are described to estimate the pose with
results presented in Section 6.

2 Zebra-crossing Detection
Zebra-crossing consists of an alternating pattern of

black and white stripes, which can be considered as a
group of consecutive edges. Zebra-crossing edges are
parallel to each other in 3D space. Therefore, when
they are projected onto the image, these edges will in-
tersect at a vanishing point (provided that they are
not fronto-parallel to the image plane). It is logical to
search for concurrent lines when looking for a structure
that originally consists of parallel lines.
2.1 Searching for Vanishing Point

There are two ways to find concurrent lines. One
approach is to search for vanishing points using Hough
Transform [1, 15, 20, 11, 3]. After obtaining straight
lines using Hough Transform, we can apply another
Hough Transform to find the intersection of these
straight lines. The vanishing points are characterized
as those points where most of the supporting line seg-
ment primitives intersect, so we can accumulate evi-
dence provided by these line segments.

However, Collins and Weiss [4] considered vanishing
point computation as a statistical estimation problem
and observed that it is not reliable when not many lines
are passing through that point. The accuracy level
stays roughly the same as the number of lines drops
from 100 down to 20, but degrades notably from 20
down to 5. In fact, any convergent group consisting of
relatively small number of lines will be left undetected
with this approach.
2.2 The Detection Algorithm

A different approach is proposed here where po-
tential groups of candidate lines are generated and
then tested for coincidence. Utcke [21] used a similar
approach for grouping and recognizing zebra-crossing
taking into account image feature uncertainties, cross-
ratio and vanishing line constraints. This approach was
employed to detect stair-cases in [14, 19].



Hough Transform line fitting is applied to the image
first. Based on the projective property of structures
with parallel lines, our algorithm picks out groups of
nearly parallel lines and checks for concurrency (hence
finding the vanishing point) as hypotheses for zebra-
crossings. Then it seeks support from the other lines
for these hypotheses, to determine the best hypothesis.

RANSAC [6] is employed to eliminate outlier edges
and a least-squares procedure is then used to find the
intersection of multiple lines [17].
2.3 Edges Partition

Using this technique based on the vanishing point
constraint, we obtain a hypothesis for some structure
containing parallel lines. To verify that the structure
consists of an alternating pattern of black and white
stripes, we add a further constraint that the edges can
be partitioned into two sets of equally-spaced parallel
lines. This is a much stronger constraint compared to
merely searching for structures with parallel lines. For
instance, in some Legoland scenes where there are a
lot of structures with parallel lines, many hypotheses
will be found and this constraint is useful to eliminate
the false ones. Intensity variation is considered here
as a cue on which to base the partition, i.e. to detect
changes of intensity from white to black and from black
to white. Geometric constraints such as cross-ratios
can be applied to refine the sets of edges.
2.4 Detection Results

We are most interested in regular zebra-crossings
whose centre-lines are perpendicular to the stripe pat-
tern. Figure 1(a) shows a typical 320x240 zebra-
crossing and the detection result is shown in Fig-
ure 1(b). Using the intensity variation, we partition
the edges into two groups. The edges are overlaid on
the image in Figure 1(c) with the dark-to-light transi-
tions marked in white and the light-to-dark transitions
marked in black.

It can be seen that some detected lines do not fit the
actual edges too well. This is partly due to slight image
distortion such that straight zebra-crossing edges may
not project to perfectly straight lines. Moreover, inter-
ference from side edges also affects the Hough Trans-
form lines.

Therefore, we can find the two side lines first in the
orthogonal quadrant direction and remove them from
the original image before the detection. Figure 1(d)
shows the two side lines found while Figure 1(e) shows
the result using the new image in which the real edges
are fitted much better. More detection results are
shown in Figure 2.

However, the endpoints of the edges now are less ac-
curate, as the side lines do not fit the actual side edges
too well, therefore removing the side lines also discards
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Figure 1: A typical zebra-crossing. (a) The original
image. (b) The detection result. (c) Detected edges are
partitioned and overlaid on (a). (d) Side lines detec-
tion. (e) Same as (c) but with side lines removed.
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Figure 2: Other zebra-crossing images. Detected edges
are partitioned and overlaid on the original images.



Figure 3: A stair-case image with concave and convex
edges detected.

some edge points. It is because the road surface is not
flat, but slightly curved with the curb sides a bit lower,
so that rain water drains into the gutters.

2.5 Zebra-crossing and Stair-case
The algorithm above also works for stair-cases be-

cause stair-cases are characterized as a sequence of
steps, which can be regarded as a group of consecutive
parallel edges. Stair-case edges can also be partitioned
into concave and convex edges, as alternating inten-
sity pattern can be observed, as shown in Figure 3.
Using concurrent lines as the image feature with inten-
sity variation is not sufficient to distinguish these two
types of parallel structures. The stair-case edges form
a virtual slanting plane, therefore, they both can be
considered as planar.

Since all zebra-crossings lie on the ground, whereas
stair-cases do not, therefore, pose information will al-
low us to differentiate them. If the parallel structure
with alternating pattern also has a null slope, then it
is confirmed as a zebra-crossing. We will now look at
some pose estimation techniques for these two types of
structures in the following sections.

3 Homography Search
We use a search approach which is similar to

Witkin’s search for tilt and slant from texture [22].
However, in the general shape from texture litera-
ture [9, 22, 10, 2, 8], isotropy of texture is assumed.
In Witkin’s case, a maximum likelihood estimator is
derived to compute the tilt and slant which will give
the best isotropy texture on backprojection.

For both zebra-crossing and stair-case structures, we
can consider the edges as a textured plane. Since the
orientation of each edge is the same, the texture is
anisotropic and therefore an a priori model is required.
The model we adopt here is a group of non-skewed par-
allel horizontal lines on the image when it is facing the
camera.

The shape from texture for our textured plane is a
more constrained problem than a general textured sur-
face, as there are only two rotational pose components:
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Figure 4: Relationship between the two views V1 and
V2 defining the rotation matrix R and translation vec-
tor t in the homography.

one around the vertical axis (vertical rotation θ); the
other around the horizontal axis (slope φ).

Our aim is to transform the image to another view
by a homography so that the camera in the new view
will be facing the structure directly. We employ criteria
based on our model while we search in a discretized
space of (θ, φ).
3.1 The Homography

Here, we look at the transformation of an image in
one view to another view induced by a plane. Based
on the initial world coordinates frame, the equation for
a plane π is:

N>X = X ·N = d (1)

where N is its normal. The relationship between the
old view coordinates X1 and the new view coordinates
X2 is given by:

X2 = RX1 + t

where R is the rotation matrix and t is the translation
vector, we have

X2 = RX1 +
td
d

= RX1 +
tN>X1

d
= (R +

tN>

d
)X1

then this homography can be expressed as

x2 = (R +
tN>

d
)x1 = Hx1 (2)

where x1 and x2 are normalized image coordinates [5].
From Figure 4, in order to make the camera face the
structure directly in the new view V2,

R =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



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Figure 5: Search criteria. (a) Original texture edges.
(b) The transformed edges when the predicted vertical
rotation is below the true value. (c) The transformed
edges when the predicted vertical rotation is above the
true value. (d) The transformed edges when the pre-
dicted slope is below the true value. (e) The trans-
formed edges when the predicted slope is above the true
value. (f) The transformed edges when the predicted
vertical rotation and slope are correct.

and t = (−X cos θ − Z sin θ, 0, X sin θ + Z − Z cos θ)>

where (X,Y, Z) is the 3D position of the structure
which has been detected and localized. For a planar
structure with vertical rotation θ and slope φ, the sur-
face normal N is:

(sinφ sin θ, cosφ,− sinφ cos θ)>

As its position (X,Y, Z) is found and lies on this plane,
we have: d = X sinφ sin θ + Y cosφ− Z sinφ cos θ

This homography holds provided that we are work-
ing with normalized coordinates. Therefore, the co-
ordinates should be normalized before applying the
homography transformation and de-normalized after-
wards [17].
3.2 Search Criteria

There are two components of our model-based
search criteria: one for the vertical rotation and the
other for the slope.

Figure 5(a) shows a synthetic image of texture lines
with a certain vertical rotation θ and slope φ. Fig-
ures 5(b), 5(c) and 5(f) indicate that the criterion for
the correct vertical rotation is based on how horizon-
tal the transformed texture lines are. This can be ex-
pressed as searching for θ which gives the lowest sum
of absolute values for the slopes of the image lines.

In fact, if the vertical rotation prediction is right,
after the homography transformation, the camera will
be facing the texture edges head-on and so horizontal
edges are expected.

Similarly, Figures 5(d), 5(e) and 5(f) show that the
criterion for the correct slope is based on how skewed
the transformed textures lines are. The correct one
will correspond to the case when the midpoints of the
texture lines all lie on a vertical line. We can quan-
tify this by computing the standard deviation of the
u-coordinates for all the midpoints of the image lines.
That is, we search for φ which gives the lowest standard
deviation.

We observe that only vertical rotation can make the
image lines become not horizontal, therefore, how hor-
izontal the lines are is independent of the slope, so
the algorithm can proceed in two stages. Firstly, we
assume an arbitrary value for φ, and perform a one-
dimensional search on θ using the vertical rotation cri-
terion. Knowing θ, we then proceed as another one-
dimensional search on φ using the slope criterion.

This reduces the complexity of the search algorithm
as two one-dimensional searches are performed instead
of one two-dimensional search. To reduce the com-
plexity further, we can employ a coarse-to-fine search
strategy [17].

4 Vanishing Line
During the detection stage, we have partitioned the

edges into two groups of equally-spaced edges corre-
sponding to the two intensity transitions. For each
group, we can use the fact that they are equally-spaced
to compute the vanishing line of that plane to estimate
its normal. The normal in general gives information
about its slope and vertical rotation, but when the
plane is horizontal, it only provides the slope.
4.1 Vanishing Line and Normal

A 3D point X is projected to camera coordinates

x =
fX
Z

So, for a very distant point X on plane π given by
Equation 1,

x ·N = lim
Z→∞

fd

Z
= 0 (3)

Its image pixel coordinates is given by: u = Cx where
C is the intrinsic camera parameters matrix. Substi-
tuting x = C−1u into x>N = 0, we have:

u>C−>N = 0

As a vanishing line is the projection of a line at infinity,
u, the projection of X, will be lying on the vanishing
line, therefore,

l∞ = C−>N (4)

Then we can determine the normal:

N = [NX , NY , NZ ]> = C>l∞ (5)
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Figure 6: The pencil of equally-spaced edges together
with the vanishing line.

A dot product with the normal of the ground plane
(0, 1, 0) allows us to compute the slope. As our camera
system is tilted downwards by γ, the estimated slope
φ is given by:

φ = cos−1(
NY
|N| )− γ (6)

4.2 Finding the Vanishing Line
Here, we use three equally-spaced image lines to

compute the vanishing line. Knowing that the three
lines are equally-spaced lying on a plane in 3D, we can
express the conjugate translation transformation [16]
as

H = I + λvl>∞ with v · l∞ = 0

where I is the identity matrix, l∞ is the vanishing line
of the plane, v is the vanishing point of the translation
direction and λ is a scalar representing the magnitude
of the translation. Referring to Figure 6, this transfor-
mation can be used to obtain l2 and l3 from l1.

l2 ∝ l1 + λl∞v>l1 (7)

l3 ∝ l1 + 2λl∞v>l1 (8)

where ∝ denotes ‘equal up to a scale’.
Since all these lines are parallel in 3D, they pass

through some vanishing point a in the image, and the
vanishing line also passes through a. For this pencil
of lines, we can express the vanishing line as a linear
combination of any two lines, for instance,

l∞ = αl2 + βl3 (9)

using the concurrency property.
Taking the vector product of Equation 7 with l2 and

Equation 8 with l3, we obtain:

l1 ∧ l2 + µl∞ ∧ l2 = 0 (10)

l1 ∧ l3 + 2µl∞ ∧ l3 = 0 (11)

where µ = λv>l1.
Taking the vector product of Equation 9 with l2 and

then with l3, we have:

l∞ ∧ l2 = βl3 ∧ l2 (12)

l∞ ∧ l3 = αl2 ∧ l3 (13)

From Equations 11 and 13, similarly from Equations 10
and 12, we get:

α = − 1
2µ

(l1 ∧ l3) · (l2 ∧ l3)
|l2 ∧ l3|2

β = − 1
µ

(l1 ∧ l2) · (l3 ∧ l2)
|l3 ∧ l2|2

Substituting these back into Equation 9, we obtain:

l∞ ∝ [(l1∧ l3) · (l2∧ l3)]l2 + 2[(l1∧ l2) · (l3∧ l2)]l3 (14)

4.3 RANSAC
We only need 3 lines to determine a vanishing line,

but usually more than 3 edges from each group are
found. We can apply RANSAC to select 3 lines at ran-
dom, compute the vanishing line l∞ and the parameter
µ, then find the number of support from all the edges.
Repeat and select the triple which has the maximum
support to compute the vanishing line. This way can
help eliminate possible outliers.

The 3 lines selected each time may not necessarily
be consecutive, so we need to extend Equation 14 to
deal with 3 arbitrary lines of known order. Given the
lines li, lj and lk corresponding to the ith, jth and kth

edges found and they are unequal, we have:

l∞ ∝ (j−i)[(li∧lk)·(lj∧lk)]lj+(k−i)[(li∧lj)·(lk∧lj)]lk
(15)

and we can obtain equations to solve for µ like Equa-
tions 10 and 11. Then we can check if a line ll supports
the current triple, by computing

E = li ∧ ll + (l − i)µl∞ ∧ ll

If |E| is greater than some threshold value δ, then line
ll is considered as an outlier.

Moreover, we may further extend this so that the
vanishing line is computed using all supporting lines
instead of just using 3 lines to improve the accuracy.

5 Two Vanishing Points
A vanishing point provides a constraint on the orien-

tation of the plane. Two such independent constraints
define a vanishing line and determine the orientation
of the plane uniquely.

Since selecting a group of lines which converge in the
image at a vanishing point is the criterion for our de-
tection algorithm, we obtain the first vanishing point.



In Section 2.4, we have detected the two side lines of a
regular zebra-crossing, which are parallel lines in 3D,
converging in the image at another vanishing point.
Hence we have two vanishing points for this plane.

Equation 3 gives us the vanishing line on the image
plane:

xNX + yNY + fNZ = 0

where (x, y) are the camera coordinates, f is the focal
length and [NX , NY , NZ ]> is the normal.

Assuming the first vanishing point is (u1, v1), the
second vanishing point is (u2, v2), the principal centre
is at (u0, v0), the equation of the vanishing line across
the two vanishing points is:

y − v0−v2
kv

x− u2−u0
ku

=
v0−v1
kv
− v0−v2

kv
u1−u0
ku
− u2−u0

ku

where ku and kv are the pixels per unit length parame-
ters for the u and v coordinates respectively. For square
pixels (k = ku = kv), this gives:

(v2−v1)x+(u2−u1)y+f
(u2 − u0)(v1 − v2)− (v0 − v2)(u2 − u1)

fk
= 0

Therefore, the normal of the plane is found and its
slope can then be estimated using Equation 6.

6 Results and Comparison
For each zebra-crossing image shown above, we ap-

ply these three techniques to estimate its pose, in par-
ticular its slope. We can obtain its vertical rotation
as well from the homography search approach. The
results are tabulated in Table 1.

Images VR: Slope: Slope: Slope:
HS HS VL(s.d.) 2VPs

Fig 1(e) −48◦ −16◦ −4.75◦(2.69◦) −4.81◦

Fig 2(a) 54◦ −12◦ −2.94◦(9.53◦) −10.93◦

Fig 2(b) 32◦ −13◦ −0.19◦(2.17◦) −8.97◦

Fig 2(c) −34◦ −10◦ −3.53◦(3.91◦) −9.46◦

Fig 2(d) −41◦ −13◦ −3.69◦(3.24◦) −5.06◦

Fig 3 45◦ 26◦ 24.58◦(3.85◦) -
Table 1: VR (vertical rotation) estimated from HS (ho-
mography search) and slope estimated from HS, VL
(vanishing line) with standard deviation and 2VPs (two
vanishing points) methods for the images

The orientation of the zebra-crossing is indicated by
the vertical rotation estimate. A negative value means
that one has to turn right appropriately to approach
the zebra-crossing, whereas a positive value is for turn-
ing left.

Since zebra-crossings are horizontal approximately,
the slope should be close to null, whereas stair-case
slope is not. The results show that their slope esti-
mated is significantly different from that of a stair-case,
therefore, slope estimation will allow us to confirm the
identity of zebra-crossings detected.

For Figure 3, since one side of the stair-case is out-
side of the view, the two vanishing points method can-
not be used. The slope criterion in the homography
search cannot apply but an equal spacing constraint is
employed instead [19].

The two vanishing points method is most simple,
but requires the vanishing point of the two side lines,
and it would not be applicable if part of the structure
is occluded. Although the first vanishing point is ob-
tained as the least-squares intersection of many edges,
the second vanishing point is obtained just from two
lines and hence it is error-prone. Edges do not need to
be partitioned.

The homography search approach can estimate the
orientation as well as the slope, whereas the other
methods can only find the slope. However, to estimate
the slope, it makes use of the edge endpoints, which are
error-prone. It would not be applicable if part of it is
occluded, as endpoints will be missing. This approach
does not require partitioning the edges.

The vanishing line method does not need the side
lines nor the endpoints, therefore it works under oc-
clusion. However, it requires a group of equally-spaced
lines, therefore, it is feasible only if the parallel struc-
ture itself is equally-spaced, or if its edges can be par-
titioned into groups of equally-spaced lines. It is less
error-prone except when some lines are missing, as all
lines are being used. In the case of zebra-crossing, it
gives an estimate for each group. A weighed least-
squares estimate is computed from the two estimates
with the error analysis carried out [17].

From the results, we can see that the homography
search and the two vanishing points methods are not
as accurate as the vanishing line method. The former
methods depend on the endpoints (lower accuracy as
discussed in Section 2.4) while the latter does not. The
road surface, which is not exactly flat, also contributes
to the slope estimation errors of the zebra-crossings.

7 Conclusion
In this paper, we look into zebra-crossing detec-

tion by grouping lines and checking for concurrency
using the vanishing point constraint. Intensity vari-
ation is used to partition the edges afterwards. How-
ever, this approach also works for stair-cases, therefore,
pose information is required to distinguish them. Three
techniques are presented for pose estimation based on
homography search, vanishing line and two vanishing



points. The experimental results presented show that
the detection algorithm with pose estimation allows us
to identify zebra-crossings in road scene images.

Although the algorithms have been developed for
TAPS, they are by no means limited to such appli-
cations. Zebra-crossing are important landmarks for
outdoor mobile robots, for example in map-building
applications or for navigation purposes.

The homography search approach can be used to
estimate pose for other parallel texture lines planar
structures. The vanishing line method is applicable
when they consist of equally-spaced lines whereas the
two vanishing points method is applicable when they
consist of two independent groups of parallel lines, e.g.
grid pattern. If the plane is not horizontal, the normal
estimated from the vanishing line or the two vanishing
points method can also provide the orientation.

These algorithms are working, though slow and far
from real-time, and have not yet been integrated into
our TAPS prototype system. Future works include op-
timization, further trials with different scenes to eval-
uate their robustness and performance, and trajectory
planning to approach the zebra-crossing found.

Acknowledgements
We thank Michael Brady and Andrew Zisserman

from University of Oxford for many helpful discussions.

References
[1] S.T. Barnard. Interpreting perspective images. Artifi-

cial Intelligence, 21(4):435–462, November 1983.

[2] A. Blake and C. Marinos. Shape from texture: Esti-
mation, isotropy and moments. Artificial Intelligence,
45(3):323–380, 1990.

[3] B. Brillault-O’Mahony. New method for vanishing
point detection. Computer Vision, Graphics, and Im-
age Processing, 54(2):289–300, September 1991.

[4] R.T. Collins and R.S. Weiss. Vanishing point calcu-
lation as a statistical inference on the unit sphere. In
Proceedings of the Third International Conference on
Computer Vision, pages 400–403, Osaka, Japan, De-
cember 1990.

[5] O. Faugeras. 3 Dimensional Computer Vision - A Ge-
ometric Viewpoint. MIT Press, 1993.

[6] M.A. Fischler and R.C. Bolles. Random sample con-
sensus: a paradigm for model fitting with application
to image analysis and automated cartography. Com-
mun. Assoc. Comp. Mach., 24:381–395, 1981.

[7] E. Foulke. The perceptual basis for mobility. Ameri-
can Foundation for the Blind Research Bulletin, 23:1–
8, 1971.

[8] J. Garding. Shape from texture and contour by weak
isotropy. Artificial Intelligence, 64(2):243–297, 1993.

[9] J.J. Gibson. The Perception of the Visual World.
Houghton Mifflin, Boston, 1950.

[10] K. Kanatani. Detection of surface orientation and mo-
tion from texture by a stereological technique. Artifi-
cial Intelligence, 23:213–237, 1984.

[11] M.J. Magee and J.K. Aggarwal. Determining vanish-
ing points from perspective images. Computer Vision,
Graphics, and Image Processing, 26:256–267, 1984.

[12] N. Molton, S. Se, J.M. Brady, D. Lee, and P. Probert.
Robotic sensing for the guidance of the visually im-
paired. In International Conference on Field and Ser-
vice Robotics FSR’97, pages 236–243, December 1997.

[13] N. Molton, S. Se, J.M. Brady, D. Lee, and P. Probert.
A stereo vision-based aid for the visually impaired. Im-
age and Vision Computing, 16(4):251–263, 1998.

[14] N. Molton, S. Se, M. Brady, D. Lee, and P. Probert.
Robotic sensing for the partially sighted. Robotics and
Autonomous Systems, 26:185–201, 1999.

[15] L. Quan and R. Mohr. Determining perspective struc-
tures using hierarchical hough transform. Pattern
Recognition Letters, 9:279–286, 1989.

[16] F. Schaffalitzky and A. Zisserman. Geometric group-
ing of repeated elements within images. In J.N. Car-
tor and M.S. Nixon, editors, Proceedings of British
Machine Vision Conference BMVC’98, pages 13–22,
Southampton, September 1998.

[17] S. Se. Computer Vision Aids for the Partially Sighted.
PhD thesis, Department of Engineering Science, Uni-
versity of Oxford, 1998.

[18] S. Se and M. Brady. Vision-based detection of kerbs
and steps. In A.F. Clark, editor, Proceedings of British
Machine Vision Conference BMVC’97, pages 410–419,
Essex, September 1997.

[19] S. Se and M. Brady. Vision-based detection of stair-
cases. In Fourth Asian Conference on Computer Vi-
sion ACCV 2000, Volume I, pages 535–540, Taipei,
January 2000.

[20] T. Tuytelaars, L. Van Gool, M. Proesmans, and
T. Moons. The cascaded hough transform as an aid in
aerial image interpretation. In Proceedings of the Sixth
International Conference on Computer Vision, pages
67–72, Bombay, India, January 1998.

[21] S. Utcke. Grouping based on projective geometry con-
straints and uncertainty. In Proceedings of the Sixth
International Conference on Computer Vision, pages
739–746, Bombay, India, January 1998.

[22] A.P. Witkin. Recovering surface shape and orienta-
tion from texture. Artificial Intelligence, 17(1-3):17–
45, August 1981.


